Structural characterization of a flavonoid-inducible Pseudomonas aeruginosa A-band-like O antigen of Rhizobium sp. strain NGR234, required for the formation of nitrogen-fixing nodules.
نویسندگان
چکیده
Rhizobium (Sinorhizobium) sp. strain NGR234 contains three replicons, the smallest of which (pNGR234a) carries most symbiotic genes, including those required for nodulation and lipo-chito-oligosaccharide (Nod factor) biosynthesis. Activation of nod gene expression depends on plant-derived flavonoids, NodD transcriptional activators, and nod box promoter elements. Nod boxes NB6 and NB7 delimit six different types of genes, one of which (fixF) is essential for the formation of effective nodules on Vigna unguiculata. In vegetative culture, wild-type NGR234 produces a distinct, flavonoid-inducible lipopolysaccharide (LPS) that is not produced by the mutant (NGRomegafixF); this LPS is also found in nitrogen-fixing bacteroids isolated from V. unguiculata infected with NGR234. Electron microscopy showed that peribacteroid membrane formation is perturbed in nodule cells infected by the fixF mutant. LPSs were purified from free-living NGR234 cultured in the presence of apigenin. Structural analyses showed that the polysaccharide portions of these LPSs are specialized, rhamnose-containing O antigens attached to a modified core-lipid A carrier. The primary sequence of the O antigen is [-3)-alpha-L-Rhap-(1,3)-alpha-L-Rhap-(1,2)-alpha-L-Rhap-(1-]n, and the LPS core region lacks the acidic sugars commonly associated with the antigenic outer core of LPS from noninduced cells. This rhamnan O antigen, which is absent from noninduced cells, has the same primary sequence as the A-band O antigen of Pseudomonas aeruginosa, except that it is composed of L-rhamnose rather than the D-rhamnose characteristic of the latter. It is noteworthy that A-band LPS is selectively maintained on the P. aeruginosa cell surface during chronic cystic fibrosis lung infection, where it is associated with an increased duration of infection.
منابع مشابه
NolL of Rhizobium sp. strain NGR234 is required for O-acetyltransferase activity.
Following (iso)flavonoid induction, nodulation genes of the symbiotic nitrogen-fixing bacterium Rhizobium sp. strain NGR234 elaborate a large family of lipooligosaccharidic Nod factors (NodNGR factors). When secreted into the rhizosphere of compatible legumes, these signal molecules initiate root hair deformation and nodule development. The nonreducing glucosamine residue of NodNGR factors are ...
متن کاملDelayed maturation of nodules reduces symbiotic effectiveness of the Lotus japonicus–Rhizobium sp. NGR234 interaction
Lotus japonicus, a model legume, develops an efficient, nitrogen-fixing symbiosis with Mesorhizobium loti that promotes plant growth. Lotus japonicus also forms functional nodules with Rhizobium sp. NGR234 and R. etli. Yet, in a plant defence-like reaction, nodules induced by R. etli quickly degenerate, thus limiting plant growth. In contrast, nodules containing NGR234 are long-lasting. It was ...
متن کاملExo-oligosaccharides of Rhizobium sp. strain NGR234 are required for symbiosis with various legumes.
Rhizobia are nitrogen-fixing bacteria that establish endosymbiotic associations with legumes. Nodule formation depends on various bacterial carbohydrates, including lipopolysaccharides, K-antigens, and exopolysaccharides (EPS). An acidic EPS from Rhizobium sp. strain NGR234 consists of glucosyl (Glc), galactosyl (Gal), glucuronosyl (GlcA), and 4,6-pyruvylated galactosyl (PvGal) residues with be...
متن کاملY4lO of Rhizobium sp. strain NGR234 is a symbiotic determinant required for symbiosome differentiation.
Type 3 (T3) effector proteins, secreted by nitrogen-fixing rhizobia with a bacterial T3 secretion system, affect the nodulation of certain host legumes. The open reading frame y4lO of Rhizobium sp. strain NGR234 encodes a protein with sequence similarities to T3 effectors from pathogenic bacteria (the YopJ effector family). Transcription studies showed that the promoter activity of y4lO depende...
متن کاملFlavonoid-inducible modifications to rhamnan O antigens are necessary for Rhizobium sp. strain NGR234-legume symbioses.
Rhizobium sp. strain NGR234 produces a flavonoid-inducible rhamnose-rich lipopolysaccharide (LPS) that is important for the nodulation of legumes. Many of the genes encoding the rhamnan part of the molecule lie between 87 degrees and 110 degrees of pNGR234a, the symbiotic plasmid of NGR234. Computational methods suggest that 5 of the 12 open reading frames (ORFs) within this arc are involved in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of bacteriology
دوره 187 18 شماره
صفحات -
تاریخ انتشار 2005